Multinomial-sampling models for random genetic drift.
نویسنده
چکیده
Three different derivations of models with multinomial sampling of genotypes in a finite population are presented. The three derivations correspond to the operation of random drift through population regulation, conditioning on the total number of progeny, and culling, respectively. Generations are discrete and nonoverlapping; the diploid population mates at random. Each derivation applies to a single multiallelic locus in a monoecious or dioecious population; in the latter case, the locus may be autosomal or X-linked. Mutation and viability selection are arbitrary; there are no fertility differences. In a monoecious population, the model yields the Wright-Fisher model (i.e., multinomial sampling of genes) if and only if the viabilities are multiplicative. In a dioecious population, the analogous reduction does not occur even for pure random drift. Thus, multinomial sampling of genotypes generally does not lead to multinomial sampling of genes. Although the Wright-Fisher model probably lacks a sound biological basis and may be inaccurate for small populations, it is usually (perhaps always) a good approximation for genotypic multinomial sampling in large populations.
منابع مشابه
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملWorking Paper Series Categorical Data Categorical Data
Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...
متن کاملAdapting random-instance sampling variance estimates and Binomial models for random-text sampling
These methods include confidence intervals and contingency tests (including multinomial tests), whether computed by Fisher’s exact method or variants of log-likelihood, χ 2 , or the Wilson score interval (Wallis 2013). These methods are also at the core of others. The Normal approximation to the Binomial allows us to compute a notion of the variance of the distribution, and is to be found in li...
متن کاملA New Formulation of Random Genetic Drift and Its Application to the Evolution of Cell Populations.
Random genetic drift, or stochastic change in gene frequency, is a fundamental evolutionary force that is usually defined within the ideal Wright-Fisher (WF) population. However, as the theory is increasingly applied to populations that deviate strongly from the ideal model, a paradox of random drift has emerged. When drift is defined by the WF model, it becomes stronger as the population size,...
متن کاملFitting Bayesian hierarchical multinomial logit models in PROC MCMC
The paper illustrates how to use the MCMC procedure to fit a hierarchical, multinomial logit model for a nominal response variable with correlated responses in a Bayesian framework. In particular, the paper illustrates how to perform three important parts of Bayesian model fitting. First, to make sure appropriate prior distributions are selected, the paper shows how to simulate draws directly f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 145 2 شماره
صفحات -
تاریخ انتشار 1997